Python/머신러닝(ML)
Python(26)- 다양한 모델 적용
두설날
2024. 6. 19. 08:50

*이 글을 읽기전에 작성자 개인의견이 있으니, 다른 블로그와 교차로 읽는것을 권장합니다.*
1. AirQualityUCI 데이터셋
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
air_df = pd.read_csv('/content/drive/MyDrive/KDT/6. 머신러닝과 딥러닝/Data/AirQualityUCI.csv')
air_df
air_df.info()
- Date: 측정 날짜
- Time: 측정 시간
- CO(GT): 일산화탄소 농도 (mg/m^3)
- PT08.S1(CO): 일산화탄소에 대한 센서 응답
- NMHC(GT): 비메탄 탄화수소 농도 (microg/m^3)
- C6H6(GT): 벤젠 농도 (microg/m^3)
- PT08.S2(NMHC): 탄화수소에 대한 센서 응답
- NOx(GT): 산화 질소 농도 (ppb)
- PT08.S3(NOx): 산화 질소에 대한 센서 응답
- NO2(GT): 이산화질소 농도 (microg/m^3)
- PT08.S4(NO2): 이산화질소에 대한 센서 응답
- PT08.S5(O3): 오존에 대한 센서 응답
- T: 온도 (°C)
- RH: 상대 습도 (%)
- AH: 절대 습도 (g/m^3)
air_df.drop(['Unnamed: 15', 'Unnamed: 16'], axis=1, inplace=True)
air_df.dropna(inplace=True)
air_df.info()
# Date 컬럼의 타입을 datetime 으로 변경
air_df['Date'] = pd.to_datetime(air_df.Date, format='%d-%m-%Y')
air_df.head()
air_df.info()
# Date column에 의한 Month 파생변수를 생성
air_df['Month'] = air_df['Date'].dt.month
air_df.head()
# Time column에 의한 Hour 파생변수를 생성
air_df['Hour'] = air_df['Time'].str.split(':').str[0].fillna(0).astype(int)
air_df.head()
# Date와 Time column을 제거
air_df.drop(['Date', 'Time'], axis=1, inplace=True)
air_df.info()
plt.figure(figsize=(12, 12))
sns.heatmap(air_df.corr(), cmap='coolwarm', vmax=1, vmin=-1, annot=True)
plt.show()
# 종속변수(RH)를 제외한 모든 컬럼을 StandarScaler로 정규화
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
ss = StandardScaler()
X = air_df.drop('RH', axis=1)
y = air_df['RH']
Xss = ss.fit_transform(X)
Xss
X_train, X_test, y_train, y_test = train_test_split(Xss, y, test_size=0.2, random_state=2024)
X_train.shape, y_train.shape
X_test.shape, y_test.shape
2. 모델별 성능 확인하기
# RMSE로 확인하기
# Linear Regression (선형회귀)
# Decision Tree Regression (의사결정나무 회귀)
# Random Forest Regression (랜덤포레스트 회귀)
# Support Vector Machine Regression (서포트벡터머신 회귀)
# lightGBM (LightGBM)
# 어떤 모델이 현재 데이터에 가장 적합한가?
my_predictions = {}
colors = ['r', 'c', 'm', 'y', 'k', 'khaki', 'teal', 'orchid', 'sandybrown',
'greenyellow', 'dodgerblue', 'deepskyblue', 'rosybrown', 'firebrick',
'deeppink', 'crimson', 'salmon', 'darkred', 'olivedrab', 'olive',
'forestgreen', 'royalblue', 'indigo', 'navy', 'mediumpurple', 'chocolate',
'gold', 'darkorange', 'seagreen', 'turquoise', 'steelblue', 'slategray',
'peru', 'midnightblue', 'slateblue', 'dimgray', 'cadetblue', 'tomato']
예측 값과 실제 값 비교해주는 시각화 함수 만들기
def plot_predictions(name_, pred, actual):
df = pd.DataFrame({'prediction': pred, 'actual': y_test})
df = df.sort_values(by='actual').reset_index(drop=True)
plt.figure(figsize=(12, 9))
# 예측값 산점도
plt.scatter(df.index, df['prediction'], marker='x', color='r')
# 실제값 산점도
plt.scatter(df.index, df['actual'], alpha=0.7, marker='o', color='black')
plt.title(name_, fontsize=15)
# 범례 추가
plt.legend(['prediction', 'actual'], fontsize=12)
plt.show()
def mse_eval(name_, pred, actual):
# 전역변수 선언
global my_predictions # 모델 저장
global colors # 색상
# 위 시각화 함수 호출
plot_predictions(name_, pred, actual)
# mse 계산
mse = mean_squared_error(pred, actual)
my_predictions[name_] = mse
# 예측값 내림차순 정렬
y_value = sorted(my_predictions.items(), key=lambda x: x[1], reverse=True)
df = pd.DataFrame(y_value, columns=['model', 'mse'])
print(df)
# 최소값, 최대값 범위 설정
min_ = df['mse'].min() - 10
max_ = df['mse'].max() + 10
length = len(df)
# subplot 막대그래프 출력
plt.figure(figsize=(10, length))
ax = plt.subplot()
ax.set_yticks(np.arange(len(df))) # y축 길이설정
ax.set_yticklabels(df['model'], fontsize=15)
bars = ax.barh(np.arange(len(df)), df['mse'])
for i, v in enumerate(df['mse']):
idx = np.random.choice(len(colors)) # 색깔 랜덤
bars[i].set_color(colors[idx])
ax.text(v + 2, i, str(round(v, 3)), color='k', fontsize=15, fontweight='bold')
plt.title('MSE Error', fontsize=18)
plt.xlim(min_, max_) # x축 범위 min_ ~ max_ 설정
plt.show()
2-1. Linear Regression
from sklearn.linear_model import LinearRegression
# 선형회귀모델 저장
model = LinearRegression()
# 훈련
model.fit(X_train, y_train)
# 예측값
pred1 = model.predict(X_test)
pred1
# RMSE 출력
rs1 = np.sqrt(mean_squared_error(y_test, pred1))
rs1
mse_eval('LinearRegression', pred1, y_test)
2-2. Decision Tree Regression
from sklearn.tree import DecisionTreeRegressor
# 의사결정나무
model2 = DecisionTreeRegressor()
# 훈련
model2.fit(X_train, y_train)
pred2 = model2.predict(X_test)
pred2
rs2 = np.sqrt(mean_squared_error(y_test, pred2))
rs2
mse_eval('Decision Tree Regression', pred2, y_test)
2-3. Random Forest Regression
from sklearn.ensemble import RandomForestRegressor
model3 = RandomForestRegressor()
model3.fit(X_train, y_train)
pred3 = model3.predict(X_test)
pred3
rs3 = np.sqrt(mean_squared_error(y_test, pred3))
rs3
mse_eval('Random Forest Regression', pred3, y_test)
2-4. Support Vector Machine
from sklearn.svm import SVR
model4 = SVR()
model4.fit(X_train, y_train)
pred4 = model4.predict(X_test)
pred4
rs4 = np.sqrt(mean_squared_error(y_test, pred4))
rs4
mse_eval('Supprt Vector Machine', pred4, y_test)
2-5. lightGBM
from lightgbm import LGBMRegressor
model5 = LGBMRegressor(randome_state=2024)
model5.fit(X_train, y_train)
pred5 = model5.predict(X_test)
pred5
rs5 = np.sqrt(mean_squared_error(y_test, pred5))
rs5
mse_eval('lightGBM', pred5, y_test)
dic = {'LinearRegression': rs1,
'Decision Tree Regression': rs2,
'Random Forest Regression': rs3,
'Support Vector Machine': rs4,
'lightGBM': rs5}
res = [key for key in dic if all(dic[temp] >= dic[key] for temp in dic)]
print(res)
min = {k: dic[k] for k in dic.keys() & set(res)}
print(min)
dic
결론 : SVM의 MSE값이 가장 크고, 랜덤포레스트값의 MSE값이 가장 작으므로 랜덤포레스트 결과 채택.
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2024)
models = {
"Linear Regression": LinearRegression(),
"Decision Tree": DecisionTreeRegressor(),
"Random Forest": RandomForestRegressor(),
"Gradient Boosting": GradientBoostingRegressor()
}
# Train and evaluate the models
results = {}
for name, model in models.items():
model.fit(X_train, y_train)
predictions = model.predict(X_test)
mse = mean_squared_error(y_test, predictions)
results[name] = mse
results
```